390. Some Aminotetrahydroquinolines. By Isidore E. Balaban.

ALTHOUGH attempts (Balaban, J., 1930, 2346) to prepare aminotetrahydroquinolines from certain nitro- and amino-methyl- and -dimethyl-hydroxyquinolines by reduction with sodium and alcohol were unsuccessful, 2-chloro-6-nitro-4-methylquinoline has now been found to yield very small quantities of dl-6-amino-4-methyll: 2: 3: 4-tetrahydroquinoline (isolated as *dipicrate*) on reduction with these reagents or with tin and hydrochloric acid.

Since this series of chloroquinolines was unfavourable for the required purpose, five aminomethoxyquinolines were prepared, and their reduction with tin and hydrochloric acid examined. Of these, only two gave the desired derivatives, viz., 5-amino-6-methoxy- and 5-amino-8-methoxy-1:2:3:4-tetrahydroquinolines, isolated as dihydrochlorides. The respective bases were immediately oxidised when solutions of these salts were basified. 8-Amino-6-methoxy-, 6-amino-8-methoxy-, and 8-amino-7-methoxy-quinoline gave only intensely purple solutions on reduction.

8-Methoxyquinoline on nitration yields the 5-nitro-derivative, whilst 7-methoxyquinoline gives two nitro-derivatives, mainly 8-nitro-7-methoxyquinoline.

EXPERIMENTAL.

The aminomethoxyquinolines were all prepared by the method of Jacobs and Heidelberger (J. Amer. Chem. Soc., 1920, 42, 2278).

dl-6-Amino-4-methyl-1: 2: 3: 4-tetrahydroquinoline Dipicrate.—5 G. of 2chloro-6-nitro-4-methylquinoline, abs. EtOH (25 c.c.), Sn (40 g.), and conc. HCl (100 c.c.) were heated for 60—70 hrs. on the steam-bath. After removal of Sn and concentration of the filtrate, the base was obtained in Et₂O as usual, and purified as *picrate*; brown, irregular plates, m. p. 173° (decomp.); yield 1.3 g. (Found: $C_6H_3O_7N_8$, 75.0; N, 16.1. $C_{10}H_{14}N_2$, $2C_6H_3O_7N_3$ requires $C_6H_3O_7N_8,\ 73.9;\ N,\ 18.1\%).$ Reduction by Na and EtOH was less satisfactory.

5-Amino-6-methoxyquinoline was prepared from the nitro-compound (Decker and Engler, *Ber.*, 1909, **42**, 1740); the *picrate* crystallised from dil. EtOH or H_2O , in which it is very sparingly sol., in brick-red needles, m. p. 225° (Found: $C_6H_3O_7N_3$, 56.6. $C_{10}H_{10}ON_2, C_6H_3O_7N_3$ requires $C_6H_3O_7N_3$, 56.8%).

5-Amino-6-methoxy-1:2:3:4-tetrahydroquinoline.—5·2 G. of the hydrochloride of the foregoing base were reduced with Sn (30 g.), EtOH (25 c.c.), and conc. HCl (100 c.c.) for 70 hrs. The dihydrochloride was obtained as monohydrate, colourless plates, m. p. 247° (decomp.), from 2N-HCl (yield 2·7 g.) (Found, in material dried at 100°: Cl, 26·7, 26·8; N, 10·1. $C_{10}H_{10}ON_{2,}2HCl,H_2O$ requires Cl, 26·4; N, 10·4%). The dipicrate crystallises from H₂O in dark irregular plates, m. p. 147°.

8-Amino-6-methoxyquinoline.—8-Nitro-6-methoxyquinoline (8 g.; from 3nitro-4-aminoanisole) gave on reduction 2·1 g. of hydrochloride, goldenyellow needles, m. p. 228°, from dil. HCl. The *picrate* crystallises from H₂O, in which it is sparingly sol., in golden needles, m. p. 221° (decomp.) (Found: C₆H₃O₇N₃, 56·9. C₁₀H₁₀ON₂,C₆H₃O₇N₃ requires C₆H₃O₇N₃, 56·8%).

5-Amino-8-methoxyquinoline.—5.7 G. of 8-methoxyquinoline (prep. from o-anisidine) were added to fuming HNO₃ (11.5 c.c.) in ice; after 20 mins., 5-nitro-8-methoxyquinoline nitrate was separated, and recryst. from H₂O as monohydrate, very pale yellow prisms, m. p. 177° (eff.) [Found, in air-dried material: loss at 100°, 6.6. $C_{10}H_8O_3N_2$,HNO₃,H₂O requires H₂O, 6.3. Found, in dried material: HNO₃ (by nitron) 23.5. $C_{10}H_8O_3N_2$,HNO₃ requires HNO₃, 23.6%]. The base had m. p. 155°, alone or mixed with an authentic specimen (from 4-nitro-2-aminoanisole).

20 G. of the above nitro-compound in boiling 95% EtOH (150 c.c.) and conc. HCl (2 c.c.) were reduced with Fe powder (20 g.) for 4 hrs.; the solution was filtered and concentrated, and the deposited material dried and extracted with C_6H_6 . The amino-compound was obtained in golden-yellow needles, m. p. 156°. The *picrate* crystallised from H₂O, in which it is moderately sol, in brown glistening needles, m. p. 126° (Found : $C_6H_3O_7N_3$, 56.8. $C_{10}H_{10}ON_2, C_6H_3O_7N_3$ requires $C_6H_3O_7N_3$, 56.8%).

5-Amino-8-methoxy-1:2:3:4-tetrahydroquinoline.—5 G. of the above aminocompound gave on reduction (as above) 2.9 g., m. p. 250° (decomp.), of *dihydrochloride* of the tetrahydro-base, which crystallises from abs. EtOH in colourless, stout, hexagonal prisms, m. p. 258—260° (decomp.) (Found, in material dried at 100°: Cl, 27.4; N, 10.4. $C_{10}H_{14}ON_{22}HCl,_{2}H_{2}O$ requires Cl, 27.3; N, 10.8%). With conc. $H_{2}SO_{4}$ and HNO₃ this salt gives an intense bluish-purple colour, and its alc. solution has a green fluorescence.

6-Amino-8-methoxyquinoline.—5.5 G. of the 6-nitro-compound (from 5-nitro-2-aminoanisole) gave on reduction 1.8 g. of the required amino-compound, m. p. 169° (softening from 165°) [Fourneau, Trefouel, and Benoit (Ann. Inst. Pasteur, 1930, **44**, 748) give m. p. 168°] (Found : N, 16.0. Calc. for $C_{10}H_{10}ON_2$: N, 16.1%); the sparingly sol. picrate forms long glistening orange needles, m. p. 224° (softening), from water (Found : $C_6H_3O_7N_3$, 55.6. $C_{10}H_{10}ON_2$, $C_6H_3O_7N_3$ requires $C_6H_3O_7N_3$, 56.8%).

8-Nitro-7-methoxyquinoline.—10 G. of 7-methoxyquinoline (Späth and Brunner, Ber., 1924, 57, 1243) were added to HNO_3 (d 1.52; 21 c.c.) at 0° in very small amounts; after 20 mins., the mixture was poured into ice-water

(400 c.c.). Purification of the solid, and of the material obtained from the mother-liquor by basification and extraction with CHCl₈, successively through nitrate, base, and picrate, yielded 4.8 g., m. p. 178°, of the 8-nitro-derivative; 0.4 g., m. p. 200°, of an isomeric nitro-compound; and 9.6 g., m. p. 231°, of 7-methoxyquinoline picrate. 8-*Nitro-7-methoxyquinoline* crystallises from CHCl₈ in long, stout, thick, pale yellow prisms, m. p. 178°, or from C₆H₆ in colourless, glistening, rectangular plates (solubility *ca.* 4% in hot solution, 0.5% in cold) (Found: N, 13.9. C₁₀H₈O₈N₂ requires N, 13.7%). The nitrate crystallises in bright yellow prismatic needles, m. p. 155—156° (eff.). ?-*Nitro-7-methoxyquinoline* crystallises from abs. EtOH in long, colourless, prismatic needles, m. p. 200° (Found : N, 13.5. C₁₀H₈O₃N₂ requires N, 13.7%).

8-Amino-7-methoxyquinoline.—The corresponding nitro-compound (10·2 g.) gave on reduction by the method of Jacobs and Heidelberger (*loc. cit.*) 4·5 g. of the base, which crystallises from 50% EtOH (charcoal) in yellow, glistening, prismatic needles, m. p. 108°, and volatilises at 100° (Found : N, 15·8. $C_{10}H_{10}ON_2$ requires N, 16·1%). The *picrate* crystallises from dil. EtOH, in which it is very sparingly sol., in terra-cotta-coloured needles, m. p. 226° (decomp.) (Found : $C_6H_3O_7N_3$, 56·9. $C_{10}H_{10}ON_2$, $C_6H_3O_7N_3$ requires $C_6H_3O_7N_3$, 56·8%).

RESEARCH LABORATORIES, MESSRS. MAY & BAKER, LTD., LONDON, S.W.18. [Received, August 8th, 1932.]